Vilma Mesa, Yannis Liakos, Matt Boelkins Calculus in Upper Secondary and University Mathematics, MatRIC Agder University Kristiansand, Norway August, 2019

DESIGNING TEXTBOOKS WITH ENHANCED FEATURES TO INCREASE STUDENT INTERACTION AND PROMOTE INSTRUCTIONAL CHANGE

PLAN OF TALK

- Research space: rationale, open source/open access textbooks, research questions
- Study design: Theoretical framing, research design, and data collection
- Findings: Instructor and Student use
- Next steps

RATIONALE

Free, open source, dynamic textbooks for university mathematics courses are now everywhere available for students and instructors

- Particularly important for calculus:
- It has a "stable" curriculum
- Gateway course for other fields \rightarrow large enrolment
- Amenable to seamless integration with technology

RATIONALE

This can be seen as great news for teaching and learning of calculus...

Are the enhanced features increasing interaction with ideas, the textbook, other students, the instructor?

- How are open source/open access textbooks used by teachers?
- How are they used by students?
- How can they be used promote instructional change?

CURRENT APPROACHES

- One-to-one observations and interview studies → how much students understand (e.g., Sierpinska,1997)
- Survey studies → activities students say they do: "prepare for exams" (e.g., Weinberg, *et al.* 2012)
- Data analytics → clustering of students by usage behavior (e.g. Philips, *et al.* 2010)

Exploratory, mixed methods study to investigate instructor and student uses of three open source textbooks:

- <u>Active Calculus</u>, Boelkins (https://activecalculus.org/)
- First Course in Linear Algebra, Beezer (http://linear.ups.edu/)
- <u>Abstract Algebra: Theory and Applications</u>, Judson (http://abstract.ups.edu/)

OPEN SOURCE OPEN ACCESS TEXTBOOKS

- Open source: The source file(s) are freely available for others to download and use.
- Open access: When only a PDF or other digital format is freely available and printable
 An electronic version that cannot be printed is not open access.
- We use the expression "open textbook" to mean either open source or open access.

AUTHORED IN PRETEXT...

- No proprietary interfaces
- Compact and portable
- Accessible from any device—laptop, tablet, phone
- Current: edit and refresh at will, never out-of-print
- Crowd-sourced proof-reading
- No pressure to satisfy market segments
- Many output formats
- FREE!

THEORETICAL FRAMEWORKS

```
Vygotsky's Subject-Tool-Object
Rabardel's
                                                            Rezat's didactical
Duality of Instruments
                                                            tetrahedron
                                                                        Resources
Instrument= Artifact + Scheme of use
                                                                                  Student
Documentational Approach
                                                            Teacher
  Document: Resources + Schemes of Use.
                                                                           Mathematics
  Resources: A collection of artifacts gathered for a specific purpose/class
  of situations.
  Schemes of Use: Uses (rules of action) + Operational Invariants
  (when those rules are called for and why)
                                     (Gueudet & Trouche, 2009; Rabardel & Wearn, 2003; Rezat 2012)
```

EDUCATION

TEXTBOOK FEATURES

- Motivating questions
- Preview activities
- "Explanation" text with elaboration, definitions, theorems, demonstrations, commentary, invitations to explore (<u>http://gvsu.edu/s/5C</u> <u>http://gvsu.edu/s/5D</u>)
- Activities
- Summary
- Exercises and problems

DESIGN

Concurrent mixed methods

• 15 instructors, 432 students, 10 states

Format	Textbook	Course	Instructor	# of Students		
HTML	Judson	Abstract Algebra	T3	12		
		Abstract Algebra	T5	27 (2nd term) , 22 (3 rd term)		
	Boelkins	Active Calculus	T16	11		
	Beezer	Linear Algebra	T1	29		
			T11	26		
			T12	29		
			T17	20		
			T18	28		
			T4	12		
			Т8	22 (2nd term) , 29 (3 rd term)		
			Т9	23		
PDF/Hardcopy	Judson	Abstract Algebra	T7	19		
	Boelkins	Active Calculus	T13	16		
	Beezer	Linear Algebra	T15	70		
	Strang	Abstract Algebra	T2	37		

DATA COLLECTION

Beginning of term			Week in the term			End of term		
		2	4	6	8	10	12	14
Teacher surveys	X							
Teacher logs		Х	Х	X	Х	Х	Х	
Course syllabi	X							
Computer-generated data								
of teacher and student	$\sim \sim \sim$	~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~
textbook viewing								
Student logs		Х	X	X	X	Х	Х	
Student survey					X			
Student tests	X							X
Student grades								Х

 Representation of viewing data by section, time, user
 https://books.aimath.org/tracktest/

- Gives a sense of textbook viewing—tangentially of use
- Augmented with user log information

PRELIMINARY RESULTS (FIRST WAVE, CALCULUS ~24 students)

SCHOOL OF

VERSITY OF MICHIGAN

EDUCATION

INSTRUCTORS' USE OF TEXTBOOK

- Most features implemented as anticipated
 - Before class: Motivation questions + pre-activities
 - During class: Activities
- Not much use of "reading questions"
- Details of tracked use...

INSTRUCTORS' USE OF TEXTBOOK

Instructor 431016: "Goals of the class: Concavity, 2nd derivative test, basics of curve sketching. On the previous class, I had assigned the students to do Preview Activity 3.1.1, Activity 3.1.2, and one problem not in the book. Lesson planning: First, I used the book to recall what I'd assigned, because the first 10 minutes of class is spent with the students presenting answers to the homework. (From 7:55 - 8:05 PCT, according to the heat map.)

INSTRUCTORS' USE OF TEXTBOOK

Instructor 431016: "Goals of the class: Concavity, 2nd derivative test, basics of curve sketching. On the previous class, I had assigned the students to do Preview Activity 3.1.1, Activity 3.1.2, and one problem not in the book. Lesson planning: First, I used the book to recall what I'd assigned, because the first 10 minutes of class is spent with the students presenting answers to the homework. (From 7:55 - 8:05 PCT, according to the heat map.)

STUDENTS' USE OF TEXTBOOKS

Out of class:

- Majority mostly use examples and solutions
- Re-read text when something is unclear
- Create personal notes augmented with textbook information, pictures, activities worked in class, assignments
- Consult other sources (Wolfram alpha, Google, peers, tutors, their instructors, Khan Academy)

In class:

"reading questions" & activities in groups

STUDENTS' USE OF TEXTBOOKS

Feature	Use
Activities	Answer homework questions, workout what was done in class, apply theorems/definitions
Definition	Understand concepts, read to figure out how to solve homework & other problems
Examples	Answer homework questions, workout theory taught in class, construct solutions to key examples
Exercises	Workout theory taught in class, Answer homework questions
Preview Activities	Be better prepared for the upcoming class, checkout how textbook definitions are used

STUDENTS' USE OF TEXTBOOK

Student 43101607 (Feb 27th, the most squares in a day): "I opened the textbook and went to section 1.7 and skipped through until I got to the exercises, which were assigned for homework. Once I had copied the problem and found what I thought was the correct answer for the assigned problem, I looked at the solution and if I got any questions wrong I made sure I understood where I made my mistake and corrected it."

STUDENTS' USE OF TEXTBOOK

Student 43101607: "I opened the textbook and went to section 1.7 and skipped through until I got to the exercises, which were assigned for homework. Once I had copied the problem and found what I thought was the correct answer for the assigned problem, I looked at the solution and if I got any questions wrong I made sure I understood where I made my mistake and corrected it."

STUDENTS' PERFORMANCE

- Statistically significant gain from beginning to end of term test in both sections (an average of 29% gain)
 - Items with large gains: sketching graph of derivative from a graph; explaining why graphs can't represent a particular value of f'(x)
 - Items with small/no gains: value of limit, interpreting inverse function of a value, estimating change in volume and FTC
- No correlation with grades

NEXT STEPS

- 1. Improving the viewing data representation and mining and better connecting those with users' responses to their use (lag time)
- 2. Refining algorithms for natural language processing to identify patterns of responses to log questions
- 3. Collecting better data from users' mathematical interactions via reading questions to describe understanding
- 4. Tracing instrumentation & instrumentalization processes
- 5. How are the interactions in the classroom?

UNDERGRADUATE TEACHING (AND LEARNING) IN MATHEMATICS WITH OPEN SOFTWARE AND TEXTBOOKS

THANK YOU!

Collaborators:

Rob Beezer

Tom Judson

University of Puget Sound David Farmer American Institute of Mathematics Stephen F Austin State U Susan Lynds University of Colorado at Boulder Yannis Liakos University of Michigan-Ann Arbor Kent Morrison American Institute of Mathematics utmost.aimath.org mathbook.pugetsound.edu

Partial support for this work was provided by the National Science Foundation's Improving Undergraduate STEM Education (IUSE) program under Award No. 1626455. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

3. There is a function g for which g'(3) = 0. Explain why none of the graphs shown below could be the displayed graphs of g.

DOCUMENTATIONAL APPROACH

